
Incremental Learning in Image Classification

Ivan D’Onofrio∗1, Gabriele Degola∗1, Luca Dibattista∗1, Fabio Cermelli2, and Barbara Caputo2

Department of Control and Computer Engineering
Politecnico di Torino, 10129 Turin, Italy

1[name.surname]@studenti.polito.it
2[name.surname]@polito.it

Abstract

One of the main issues concerning machine learning sys-
tems nowadays is the inability to incrementally learn fea-
tures from the external world without incurring unwanted
effects or the inability to preserve previous knowledge.

In our work, we started by reproducing the experiments
of iCaRL to have a better understanding of the incremental
learning concept and of the problems of current implemen-
tations. We tried to solve some of the issues by proposing
our variations of the iCaRL architecture based on deep gen-
erative approaches.

Our code is publicly available: https://github.c
om/gabridego/MLDL20 Incremental Learnin
g.

1. Introduction
Incremental Learning consists in generating a learner

that is able to learn continuously without incurring what is
technically defined as catastrophic forgetting [11].

Formally, we demand the following three properties of
an algorithm to qualify as class-incremental:

(i) it should be trainable from a stream of data in which
examples of different classes occur at different times,

(ii) it should at any time provide a competitive multi-class
classifier for the classes observed so far,

(iii) its computational requirements and memory footprint
should remain bounded, or at least grow very slowly,
with respect to the number of classes seen so far.

To solve issues related to this kind of setting different so-
lutions have been proposed in recent years. This work aims

∗indicates equal contribution

to reproduce and improve results obtained by iCaRL (incre-
mental classifier and representation learning) [15], over-
coming some of its main issues using a personal approach
that will be described in Section 5.

iCaRL focuses the attention on preserving not only pre-
vious knowledge over time, but also a proper representation
of it thanks to a system of prototypes. There are three main
ideas behind the iCaRL concept:

• classification by a nearest-mean-of-exemplars rule
(Section 2.2),

• prioritized exemplar selection based on herding,

• representation learning using knowledge distillation
and prototype rehearsal (Section 2).

While in Section 3 we will focus our attention on the
methods used to implement and reproduce the results his-
torically obtained by iCaRL, in Section 4 we will report ex-
periments on CIFAR100 dataset [8] and different classifiers
showing that iCaRL can class incrementally and modularly
learn over a long period.

Additionally, we tried to exploit different approaches to
overcome some of iCaRL’s weaknesses. Although the sys-
tem can incrementally learn new information over time ef-
fectively, it suffers from some limitations:

(i) The number of exemplars per class, defined apriori,
shrinks at each iteration, leading with the increase of
classes over time to a decrease in model performances.

(ii) Imbalance between new images and stored exemplars
biases the representation of previous knowledge in fa-
vor of incoming data.

(iii) The herding method exploited by iCaRL tends to be-
come less effective with classes characterized by a
multitude of different representations, causing a loss
of relevant information over time and overfitting.

1

https://github.com/gabridego/MLDL20_Incremental_Learning
https://github.com/gabridego/MLDL20_Incremental_Learning
https://github.com/gabridego/MLDL20_Incremental_Learning


We experimented two distinct approaches to face both
issues:

• implementing a new herding system based on cluster-
ing to store in an efficient way bunches of heteroge-
neous and representative exemplars;

• extending the concept of prototype rehearsal increas-
ing the number of exemplars per iteration generating a
new set of balancing synthetic features using a gener-
ative approach.

In Section 5 we will focus our attention on these solu-
tions reporting also the results of each experiment.

2. Related work
Several works deal with catastrophic forgetting, a con-

sequence of the “stability-plasticity dilemma”. Ideally, a
neural network should be plastic enough to gain knowledge
from new data, but stable enough to preserve old important
information. Standard neural networks are characterized
by excessive plasticity, forgetting most of the old informa-
tion after training on new ones. In a class-incremental sce-
nario, a straightforward way to solve this problem consists
of training a new network every time new classes arrive on
all the classes seen so far, but this is not feasible as previous
information might be no more available and this solution is
not able to scale.

Different solutions have been proposed to add new
classes to an already trained model and the most effective
ones are based on “rehearsal”, training the network with the
newly received data together with some previous informa-
tion. In this work, we mainly focus on iCaRL, which adopts
several interesting strategies to address the problem. First
of all, it stores a fixed number of examples of old classes,
called exemplars, in a prioritized way and uses them to pre-
serve old information through distillation, a concept orig-
inally introduced by Hinton et al. [6] to transfer knowl-
edge from a large to a small network and then adopted by
Li and Hoiem [9] as Learning without Forgetting for task-
incremental learning. Then, the exemplars are used in clas-
sification exploiting a “nearest-mean-of-exemplars” (NME)
strategy, computing, according to the current network, the
average feature of all the exemplars belonging to each class
(prototypes) and the feature vector for the image to be clas-
sified, assigning the class label with the most similar proto-
type. This is an adaptation of the nearest-class-mean clas-
sifier [12] to the class-incremental setting, where the true
class mean is not available as only the exemplars are stored.

Although iCaRL outperforms previously existing meth-
ods it presents some problems and later works try to im-
prove it. One of the most critical points consists of the
bounded memory requirement, which causes the number of

stored exemplars per class to decrease each time new in-
formation arrives, with a high imbalance between old and
new classes and a large bias towards the new ones. Hou
et al. [7] tackle this problem using cosine normalization in
the last layer of the network, as the features extracted from
the new classes are higher in magnitude with respect to the
old ones, and introduce the Less-Forget Constraint for dis-
tillation, encouraging the orientation of features extracted
by the current network to be similar to those by the orig-
inal model. Wu et al. [21] demonstrate that the last fully
connected layer is biased and propose a Bias Correction
Layer, which applies a linear function to the output of the
new classes using some estimated bias parameters. This is
particularly effective on large datasets.

Other works exploit additional generative models to gen-
erate synthetic examples from previously learned distribu-
tions and use them in place of the exemplars, an approach
known as pseudo-rehearsal [16]. Shin et al. [18] are in-
spired by the human brain and combine a generator and a
solver, both trained incrementally on the output data of the
old generator. He et al. [5] instead train a conditional gen-
erative network for each class to better model the data dis-
tributions and train the classifier on a mix of real exemplars
and generated data for the old classes. Interestingly, Liu et
al. [10] generate features instead of images, which is an eas-
ier task for complicated datasets, and use them for feature
distillation in the feature extractor and feature replay in the
classifier.

2.1. Learning Without Forgetting

Li and Hoiem [9] tried to decrease the effect of catas-
trophic forgetting using the Knowledge Distillation loss [6]:

Lθ
t

kd(x) = −
∑

c∈Kt−1

pcθt−1(x) log pcθt(x) (1)

where pcθt is the softmax probability that the network gives
for class c at time t, and Kt−1 is the set of classes known
by the network at time t− 1. The final loss is:

Llwf (x) = Lθ
t

ce(x) + λ0Lθ
t

kd(x) (2)

where Lθtce(x) is the cross entropy loss, and λ0 is a loss bal-
ance weight.

2.2. iCaRL

Rebuffi et al. [15] improved the LwF approach using a
classifier based on nearest-mean-of-exemplars and a selec-
tion method for exemplars based on herding.

The nearest-mean-of-exemplars assigns to the input im-
age x the label:

y∗ = argmin
c∈Kt

‖φ(x)− µc‖ (3)

2



where φ(x) is the features vector of the image x, and µc is
the mean of the features of the exemplars of class c.

The exemplars are selected by assigning to the kth ele-
ment (for k = 1, . . . ,m):

pk ← argmin
c∈Kt

∥∥∥∥∥∥µ− 1

k
[φ(x) +

k−1∑
j=1

φ(pj)]

∥∥∥∥∥∥ (4)

where m is the number of exemplars per class to store.

2.3. Generative Feature Replay

Liu et al. [10] try to solve the imbalance between old
and new classes through generative feature replay, exploit-
ing a conditional Wasserstein Generative Adversarial Net-
work to generate features for the previously seen classes.
Many methods train a generator to generate images, but it
is difficult to produce accurate samples for datasets with a
large number of classes like CIFAR100, while feature gen-
eration is considerably easier. In this way exemplars are not
necessary and a the relevant amount of memory previously
occupied by the K exemplars is freed. In addition, the in-
formation is preserved over time using a replay alignment
loss LRAGt

, introduced in [20], as distillation for the gener-
ator, encouraging the current generator Gt to produce the
same feature as the previous one Gt−1 when conditioned
on a old class c and on a given latent vector z sampled from
a Gaussian distribution pz . Formally, it is defined as:

LRAGt
=

t−1∑
j=1

∑
c∈Cj

Ez∼pz

[
‖Gt (c, z)−Gt−1 (c, z)‖22

]
(5)

and is summed during training to the standard conditional
WGAN loss for the generator:

LWGAN
Gt

(Xt) = −Ez∼pz,c∈Ct
[Dt (c,Gt (c, z))] (6)

where Dt = (Xt, Ct) contains the new images and labels at
time t. The current generator Gt is trained against the dis-
criminatorDt, whose objective is to mark as real the images
belonging to Dt and as fake the images generated by Gt.
Therefore, it is trained according to the conditional WGAN
loss:

LWGAN
Dt

(Xt) = + Ez∼pz,c∈Ct
[Dt (c,Gt (c, z))]

− Eu∼Dt
[Dt (c, φt (x))]

(7)

Finally, feature distillation is performed forcing the new
feature extractor φt to produce similar features to the ones
of φt−1, minimizing their L2 distance:

Lφt
(Xt) = Ex∼Xt

[‖φt (x)− φt−1 (x)‖2] (8)

3. Method
To compare our results and variations with the exper-

iments performed by Rebuffi et al. [15] we have used a
ResNet32 on CIFAR100 with the same hyperparameters of
the original paper. When used, the number of exemplars
is fixed to K = 2000. Each training phase consists of
70 epochs. The learning rate is initially set to 2 and is di-
vided by 5 after 49 and 63 epochs when using binary cross-
entropy loss for both classification and distillation. A batch
is composed of 128 images and the weight decay is 10−5.
Before training, the images are augmented random cropping
32 pixels with 4 pixels of padding and flipping horizontally
with probability 0.5.

We incrementally trained the network with one batch per
time, each containing 10 classes. We performed three ex-
periments with different classes per batch, randomly divid-
ing the training set into the 10 batches three times, and then
we used the same setting for the subsequent experiments
to guarantee consistence. In addition, we keep 10% of the
images to validate the methods on the current batch of 10
classes, while they are tested on all the test images belong-
ing to the previously seen classes.

To study iCaRL and how it deals with the incremen-
tal learning problem, we implemented and compared four
models: fine-tuning baseline, Learning without Forgetting
in a multi-class scenario, hybrid1 and, finally, iCaRL. Each
model extends and improves the previous one and their per-
formances on the test set per-batch of 10 classes are com-
pared in Figure 2a and are reported in the first rows of Ta-
ble 1. In addition, confusion matrices are reported in Fig-
ure 1.

The first step is the fine-tuning baseline, in which the
model learns new classes without the distillation loss but
with only the classification one. The classification is per-
formed by the last fully connected layer and the accuracy
is good on the first 10 classes but immediately drops on the
next batches, as the network completely forgets the previ-
ous classes when it receives new information, falling into
catastrophic forgetting.

Then the distillation term is added to the classification
loss, as explained in Section 2.1 and in [15]. In this way,
the network is encouraged to predict the correct label for the
new class, while reproducing the scores of the previous net-
work for the old classes. As shown in the graph, the model
can retain some previous knowledge but the performances
are still far from being satisfying.

The third model is the first hybrid setup used in [15],
adding the exemplars-based rehearsal during training but
still using the fully connected layer for classification. Basi-
cally, this model is equivalent to iCaRL without the NME
classifier. The total number of exemplars is bounded, there-
fore the number of exemplars per class continuously shrinks

3



(a) Finetuning (b) LwF.MC (c) iCaRL

Figure 1: Confusion matrices of different methods on CIFAR100. The classes are represented by order of arrival, from left to
right. The horizontal axis represents the predicted classes, while the vertical axis represents the real ones.

from 200 after the first batch to 20 when the model is trained
on all classes. The introduction of exemplars has a high im-
pact on accuracy.

Finally, the full iCaRL model is implemented, adding the
classification through nearest-mean of exemplars to the hy-
brid1 solution. The obtained results are comparable with
the ones of [15], which are obtained on ten runs instead of
three, so we can say that the model has been successfully
replicated. The confusion matrix in Figure 1c shows that
the network performs well even in the first classes it has
been trained on. It is important to underline that the exem-
plars are stored without the previously mentioned data aug-
mentation but are transformed before the training phase. In
this way, they are comparable with the test images and can
be correctly used for classification, as no data augmentation
is performed on the test set. In addition, we experimented
with two different policies for exemplars selection, taken
randomly or according to the herding policy described in
Section 2.2. As reported in Table 1, we are able to demon-
strate that the model with herding obtains negligibly better
performances, despite its higher complexity and required
time with respect to random selection. For this reason, in
the next experiment, the exemplars are randomly selected
unless otherwise indicated.

3.1. Classifiers

The last layer of an artificial neural network is almost
always a fully connected layer with a number of neurons
equal to the number of classes. Despite being the most
straightforward way to classify, it is possible to use the fea-
tures extracted from the previous layers of the network and
use them for other classifiers.

As in iCaRL, we applied the nearest-mean-of-exemplars
(NME) classifier discussed in Section 2.2. It computes, for

each class, the mean vector of the features of the elements
that belong to that class. When the input x has to be classi-
fied, the NCM assigns to it the class with the closest mean
to its features vector.

With a similar reasoning and inspired by [7] we tried
classification trough cosine similarity. We computed the
mean vectors of the features for each class and, for each
input x, we extract and normalize the features vector and
assign it to the class with the highest cosine similarity. In
this way, we take into consideration the spatial orientation
of the extracted features, which may contain important in-
formation.

Support Vector Machines (SVMs) are the state-of-the-art
large margin classifiers. SVMs may be used in the training
phase [19], but we decided to use a fully connected layer
during the training, and replacing it with an SVM for clas-
sification. We used the radial basis function kernel with
C = 1.0 and γ = (nfeatures · σ2)−1, where nfeatures is the
number of features (the number of neurons of the penul-
timate layer) and σ2 is the variance. During the training
phase we used the Soft Nearest Neighbor Loss [4] (SNN
loss) described in Section 3.2.3 to better separate images of
different classes.

We tried other classification methods like k-nearest
neighbors (k-NN) [14] with k = 5 and random forest
(RF) [2] with 100 trees.

3.2. Losses

iCaRL uses binary cross-entropy loss for classification
and the LwF loss for distillation, but several choices are
possible and can improve the results. In this section we
describe few possible losses, while in Section 4 we ana-
lyze some combinations, their motivations, and their per-
formances.

4



Table 1: Incremental learning results (accuracy, µ ± σ, nsamples = 3) on CIFAR100 dataset with an increment of 10 classes.
Finetuning and LwF [9] do not use any exemplars from the old classes. hybrid1 [15], iCaRL [15], iCaRL with a random
selection of the exemplars, and all the variations use the same amount of exemplars from the old classes. The first lines
contain the results that we obtained by replicating the iCaRL paper. The middle lines contain the iCaRL implementation with
different losses (binary cross-entropy, mean square errors, Less-Forget constraint, Soft Nearest Neighbors). The bottom lines
contain the results combining the iCaRL implementation with different classifiers (Support Vector Machine, k-NN, Random
Forest).

Model Mean accuracy 1st batch accuracy 10th batch accuracy Gap 1st to 10th batch

iCaRL 0.6076± 0.1210 0.8540± 0.0422 0.4681± 0.0004 45%
iCaRL (random policy) 0.6000± 0.1224 0.8430± 0.0548 0.4567± 0.0135 46%
hybrid1 0.5486± 0.1555 0.8560± 0.0394 0.3629± 0.0056 58%
LwF.MC 0.4382± 0.1875 0.8483± 0.0468 0.2424± 0.0084 71%
Finetuning 0.2527± 0.2214 0.8490± 0.0484 0.0911± 0.0030 89%

iCaRL + MSE loss 0.6153± 0.1190 0.8527± 0.0403 0.4752± 0.0078 44%
iCaRL + BCE + MSE loss 0.5745± 0.1499 0.8553± 0.0556 0.3913± 0.0068 54%
iCaRL + LFc 0.5563± 0.1627 0.8593± 0.0448 0.3517± 0.0101 59%
iCaRL + SNN loss 0.4756± 0.1486 0.7940± 0.0430 0.3060± 0.0010 61%

iCaRL + cosine similarity 0.6058± 0.1210 0.8527± 0.0452 0.4676± 0.0036 45%
iCaRL + SVM 0.5998± 0.1227 0.8447± 0.0527 0.4555± 0.0071 46%
iCaRL + SVM + SNN loss 0.4731± 0.1465 0.7840± 0.0360 0.3011± 0.0051 62%
iCaRL + 5-NN 0.5857± 0.1366 0.8527± 0.0444 0.4176± 0.0010 51%
iCaRL + RF 0.5818± 0.1377 0.8547± 0.0425 0.4164± 0.0096 51%

3.2.1 Binary Cross Entropy Loss

We started our experiments with the Binary Cross Entropy
Loss (BCE loss) [13]:

Lbce(x, y) = − 1

n

n∑
i=1

[yi · log(pi) + (1− yi) · log(1− pi)]

(9)
where yi is 1 if the ith element belongs to a certain class,
0 otherwise and pi ∈ [0, 1] is the probability that item i
belongs to that class.

Since the BCE loss deals with binary classification, we
used a one-hot encoding for the target and the sigmoid func-
tion for the output. iCaRL uses BCE for distillation too,
concatenating the output of the old network and the actual
labels to balance the contribution of old and new classes.

3.2.2 L2 loss

L2 loss function is the mean squared error between the true
and the predicted value:

Lmse(x, y) =
1

n

n∑
i=1

(xi − yi)2 (10)

This loss can be used for both classification, minimizing
the L2 distance between the probability that an element be-
longs to a class and the one-hot encoding of the actual class

as presented above, and for distillation, for example, com-
puting the distance between the features obtained from the
old network and the new ones.

3.2.3 Soft Nearest Neighbor Loss

Frosst et al. [4] introduced, in 2019, the Soft Nearest Neigh-
bor Loss (SNN loss) for a batch of n samples (x, y):

Lsnn(x, y, T ) = − 1

n

n∑
i=1

log


∑

j∈[n]
j 6=i
yi=yj

e−
‖xi−xj‖

2

T

∑
k∈[n]
k 6=i

e−
‖xi−xk‖2

T


(11)

where T is the temperature.
SNN loss is a measure of the entanglement of the la-

beled images. High values of the loss means that the classes
are muddled up, while it is easier to separate classes with a
lower value of the loss. For this reason, we used this loss
with the SVM.

The SNN loss requires high values of batch size since it
computes the distance between points on the batch only. If
in a single batch there are few points per class (eventually
outliers of their classes) the loss value is not reliable.

The temperature has an important role in the loss value.
Fontanel et al. [3] suggest to set T = σ2 to keep the loss
value as stable as possible.

5



By increasing the batch size to 1024 and using T = σ2

we increased the accuracy on the test set on the first batch
from 0.472 to 0.694.

We tuned the learning rate, that we set to 1.0, and we in-
creased the number of epochs to 150. The learning rate was
multiplied by 0.2 after 105 and 135 epochs (respectively 7

10
and 9

10 of the number of epochs, as for iCaRL).
In Section 6 we discuss how to improve more the net-

work using the SVM and the SNN loss.

3.2.4 Less-Forget constraint

Hou et al. [7] propose Less-Forget constraint (LFc) as dis-
tillation loss, alternatively to LwF. They freeze the network
trained on the old classes and compute the distillation loss
on the features as:

Llfc (x) = 1− 〈φ̄t−1 (x) , φ̄t (x)〉 (12)

where φ̄t is the normalized features vector at time t. This
encourages the orientation of the features extracted by the
current network to be similar to the features extracted by
the old ones, with the aim of preserving the previous knowl-
edge.

4. Ablation study
Before proceeding with our personal approach to the

class-incremental learning problem, we propose a simple
ablation study with some modifications to the key features
of iCaRL: the distillation loss and the NME classifier. Here
we describe the results of some experiments performed with
some combinations of the losses and classifiers presented
in Sections 3.1 and 3.2 and provide motivations for our
implementation choices. The results of the performed ex-
periments are reported in the second and third sections of
Table 1 too. In the next experiment, when using different
losses for classification and distillation, the total loss func-
tion is computed as:

L = λLd + (1− λ)Lc (13)

where Ld is the distillation loss, Lc is the classification loss
and λ = n

n+m , where n and m are the numbers of old and
new classes respectively, is used to balance between the two
losses and consider each class equally.

Regarding the different choices for the losses, we started
using L2 loss instead of binary cross-entropy for both classi-
fication and distillation, maintaining the same hyperparam-
eters as before. In this way, we are forcing the network
predictions to be near in L2 norm to the ground truth for the
new classes and the outputs for the old classes to be similar
to the outputs of the old network. This is conceptually sim-
ilar to what is done by iCaRL and achieves slightly better
performances.

Then we tried a different approach, using BCE for clas-
sification and MSE for distillation, encouraging the features
extracted by the current feature extractor to be similar to the
ones of the old model. This distillation has been formalized
in equation 8 and is particularly useful when it is required
to maintain similar feature representations over the training
step. In addition, we tried to include it in our modification,
as detailed in Section 5.2.2. With the fixed hyperparame-
ters, the results are not satisfying.

As a third combination, we investigated the previously
mentioned methods to reduce the natural bias of an incre-
mental setting towards the new classes. We implemented
the Less-Forget constraint introduced in [7] as an alternative
to Learning without Forgetting and trained the network with
the BCE as classification loss. However, we were not able to
replicate the results of the paper and the performances were
very poor with respect to the standard iCaRL. The work by
Hou et al. includes the contribution of a third complex loss,
called margin ranking loss, to enforce the inter-class separa-
tion in the feature space and rely on a cosine normalization
layer to preserve the same order of magnitude for features in
different learning stages. In addition, they dynamically tune
the parameter λ and their method has proven to be partic-
ularly effective if the first batch contains more classes than
the others, as they start with 50 classes in the first group.
The behavior of our model with these losses is reported in
Figure 2b.

Regarding the classifiers, we implemented different tra-
ditional machine learning classifiers as described in Sec-
tion 3.1, such as Support Vector Machines, K-Nearest
Neighbors and Random Forest, plugged in place of the last
FC layer of the network trained with the default iCaRL
setting and used for classification in place of NME. They
all obtained similar performances and are comparable with
iCaRL, as represented in Figure 2c. Even classification
through cosine similarity performs similarly to iCaRL, so
the mean and the spatial orientation of the stored exemplars
in the feature space probably carry similar information.

Finally, we experimented with SVM applied on a model
trained with SNN loss for both classification and distillation
and the performances are worse than iCaRL, as analyzed in
Section 3.2.3. However, this deserves further discussion and
is addressed in Section 6.

5. Personal implementation
In this section, we discuss some personal experiments

carried out trying to overcome some of iCaRL limitations.
Specifically, we focused our attention on two distinct steps
of system pipeline:

(i) Exemplars herding, affected by overfitting and infor-
mation loss as the classes to remember increases over
time.

6



10 20 30 40 50 60 70 80 90 100
Number of learned classes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 o
n 

te
st

 se
t

iCaRL - NME policy
iCaRL - random policy
hybrid1
LwF.MC
Finetuning

(a) Replica of iCaRL experiments.

10 20 30 40 50 60 70 80 90 100
Number of learned classes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 o
n 

te
st

 se
t

iCaRL
iCaRL + MSE
iCaRL + LFc
iCaRL + SNN

(b) iCaRL with different losses.

10 20 30 40 50 60 70 80 90 100
Number of learned classes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 o
n 

te
st

 se
t

iCaRL
iCaRL + SVM
iCaRL + SVM with SNN
iCaRL + 5-NN
iCaRL + RF

(c) iCaRL with different classifiers.

Figure 2: Incremental learning results (accuracy) per batch with settings of Table 1.

(ii) Limited exemplars storage, which in the long run leads
to a strong bias between the classes to remember in
favor of the new one.

To overcome these issues, we propose below some alter-
natives designed to artificially increase the number of exem-
plars involved in prototype rehearsal while maintaining the
system scalable, and others to improve the herding system
in the exemplars selection phase preserving representation
distribution.

5.1. Herding with Affinity Propagation

One of the main weaknesses of the original iCaRL herd-
ing system is the choice of exemplars based on minimizing
the euclidean distance between candidates and the current
exemplars representation mean. In the long run, this setting
could lead to a loss of information.

(i) Images and associated feature maps are generally char-
acterized by heterogeneous representations. Selecting
the ones which are closer to the exemplars mean means
carry out prototype rehearsal using only images whose
representation is comparable to the most common and
homogeneous distribution within a class, without con-
sidering remaining heterogeneous information;

(ii) The previous statement implies that the model is also
subject to overfitting since the information that is prop-
agated through time by the system is just the represen-
tation of the most common class distribution.

We were able to demonstrate so far that iCaRL achieves
similar performances both using nearest-exemplar mean
and random herding policies. In this section, we will
explain an alternative solution based on clustering that
achieved slightly better performances compared with the
previous ones. We implemented a new policy based on
Affinity Propagation (AP) (Algorithm 1) clustering algo-
rithm based on the concept of “message passing” between
data points.

Algorithm 1: Affinity propagation
Input: Similarity matrix S between the individuals

to be classified.
Output: Clusters grouping individuals who are

alike.
Construct the graph from S;
Initialize availabilities;
Update availabilities and responsibilities:

R(i, k) = si,k −max
k′ 6=k
{A (i, k′) + si,k′}

A(i, k) =

{
min

{
0, R(k, k) +

∑
i′∈{i,k}max {0, R (i′, k)}

}
i 6= k∑

i′ /∈(i,k) max {0, R (i′, k)} i = k

while convergence not reached do
Update availabilities and responsibilities
according to a damping factor λ ∈ [0, 1] ant t
number of current iteration:

R(t+1)(i, k) = (1−λ)R(t+1)(i, k)+λR(t)(i, k)

A(t+1)(i, k) = (1−λ)A(t+1)(i, k)+λA(t)(i, k)

end
foreach individual i do

Determine of the representative k:

arg max
k

(A(i, k) +R(i, k))

end

The feature that makes this method suitable for our pur-
poses is that AP does not require the number of clusters
to be determined or estimated before running the algorithm
and it can find “exemplars”, members of the input set that
are representative of clusters.

That approach allowed us to overcome and improve is-

7



Algorithm 2: Clustering policy based on AP
Input: Representation ψ of each input image.
Output: Set of images Et as exemplars for class t.
Apply AP algorithm on ψ(Xt) where Xt is the set
of all images belonging to a new class t at current
training step;

Sort x ∈ Xt by asc. euclidean distance from its
centroid and desc. number of elements of its
cluster;

Take first n images from sorted Xt where n is the
number of exemplars that have to be stored in
current training step:

n =

⌊
K

known classes

⌋
Et ← Xt

i i = 1, ..., n

sues related to nearest-exemplars mean, storing as exem-
plars not only images coming from most common repre-
sentation but also taking into account more heterogeneous
representation identified by the clustering algorithm.

Specifically using this method we were able to:

• Preserve overtime at least the representation of the cen-
troids obtained applying AP sorted by cluster cardinal-
ity and, additionally, some of the representations that
best describe their centroid by euclidean distance.

• Since exemplars are stored sorted by importance, it is
possible to scale easily the number of exemplars stored
per class through time getting rid of the last elements
of these sets.

Nevertheless, this method is subject to some throwbacks:

• When the number of exemplars per class shrinks, it is
not possible to preserve information about large clus-
ters, totally described by their centroids only.

• When the number of clusters is large, it is hard to pre-
serve at least one exemplar for each of them.

5.2. Pseudo-rehearsal

In pseudo-rehearsal setting, instead of using a chosen
subset of the dataset observed so far to preserve classes al-
ready learned, exemplars used to refresh model memory are
generated by an auxiliary agent.

We exploited this method trying to improve the standard
exemplars selection preserving its scalability since model
memory requirement needs to remain constant - or at least

bounded - until the end of the process. Specifically, we im-
plemented two distinct methods able to generate synthetic
data from knowledge learned up to this point:

(i) A stochastic generator based on known class features
mean representation.

(ii) A deep incremental WGAN-based generator able to
generate synthetic features trained on data observed so
far.

The two solutions are characterized by different com-
plexities, but both were designed to perform the same func-
tion: propagate over time previous knowledge in order not
to make the system forget its knowledge.

These are straightforward since we request them not to
generate images to train the entire network, but just to pro-
duce a synthetic features-set containing elements similar to
the output of the last layer of the ResNet feature extractor
to train and make its classifier able to remember previous
classes.

5.2.1 Random pseudo-rehearsal

To increment the number of exemplars without using more
memory or, eventually, using K = 0 exemplars, we tried
the pseudo-rehearsal method by Robins [16], that we will
call random pseudo-rehearsal. It consists of generating ran-
dom images by assigning 0 or 1 with the same (50%) proba-
bility to each bit of the image. After generating the image, it
will be forwarded through the network to compute the label
and use it as an exemplar.

We observed that using a random image generation ap-
proach, after the first batch more than 70% of the images
belonged to the same class. After the fourth batch, all the
images belonged to the same class.

Since adding exemplars to just one class is not balanced
and may worsen the performances, we used the approach
described in Algorithm 3. We decided to generate a vec-
tor of features instead of an image. For each learned class,
we used the mean and the standard deviation of the exem-
plars’ features that we had already computed when we got
the representation of the exemplars to choose which ones to
store.

We generated m random vectors, each one from a nor-
mal distribution with mean and variance of that class. Since
having the same mean and standard deviation of a certain
class does not mean that the generated representation be-
longs to that class, we forwarded the image through the net-
work to compute its label. We added the generated features
and the computed label to the training dataset. With nrpr
features vectors generated, and nbatches per epoch, we put
nrpr/nbatches random features vectors per batch, randomly

8



Algorithm 3: Not-so-random pseudo-rehearsal
Input: C (set of learned classes)
Input: m (images per class to generate)
Output: Set of not-so-random features generated
foreach c in C do

µc = mean
x∈c

(φ(x))

σc = std
x∈c

(φ(x))

Initialize empty array φnsr
c

for i = 1, . . . , m do
φnsr
c [i] = N (µc, σ

2
c )

end
end

sampled from the generated ones. We forwarded the im-
ages through the entire network, and the generated features
through the last fully connected layer.

5.2.2 GAN-driven pseudo-rehearsal

The most intuitive approach to pseudo-rehearsal is to train
a generative model on real images and use them to sam-
ple images for the old classes from the learned distribution,
which will then be used in place of the exemplars. This
approach is followed for example in [18] and [5]. How-
ever, they obtain good results on MNIST, a much simpler
dataset than CIFAR100, or use a separate model for each
learned class, which goes against our bounded-memory re-
quirement and may become infeasible when the number of
classes becomes large. At first, we tried to adopt a simi-
lar strategy to [18] to keep constant the number of available
examples per class k (for example 100) while the occupied
memory remains bounded. When a new batch of 10 classes
arrives, the network is trained on the new data together with
the stored exemplars and, if they are not enough, differ-
ent conditional Generative Adversarial Networks have been
tried to generate synthetic exemplars, requiring images of
the old classes. After training iCaRL’s ResNet, the GAN is
trained on the new data together with the exemplars and the
previously generated images for distillation.

However, a similar approach presents some problems, as
at each batch the new GAN is trained on the images gen-
erated by the old one, possibly propagating error and inac-
curate representations. For the same reason, generative net-
works must perform almost perfectly and have to be trained
for a very large number of epochs, which was not possible
with our available resources and can lead to overfitting if
the hyperparameters are not set correctly.

For these reason, we adopted an approach similar to [10],
explained in Section 2.3. Instead of generating images, we
exploited a conditional Wasserstein GAN [1] to generate
synthetic features. As mentioned before, feature genera-

tion is easier than image generation on large datasets like
CIFAR100, while WGANs can improve stability with re-
spect to other generative networks thanks to a different loss
function. That also allows reducing the overhead and com-
plexity of the feature extractor.

Generate features for FC layer: First, we used the fea-
tures generated by the WGAN to distill the knowledge in
the fully connected layer. When the network receives the
first batch of classes, it is trained according to the standard
binary cross-entropy loss and the generator and discrimina-
tor are trained on the same images, according to the WGAN
loss together with a conditional loss, which encourages the
discriminator to correctly classify the features and the gen-
erator to sample from the required class distribution. At the
next iterations, some features are generated, in order to have
a minimum amount k of information for each class, and are
passed through the last fully connected of both the new and
the old network. The obtained values are concatenated with
the networks’ outputs for stored exemplars and used for dis-
tillation as in LwF. The GAN is trained as before, with the
additional replay alignment loss for the generator described
in Section 2.3, to avoid forgetting in the feature generator.

Generate features for classification: The previous solu-
tion introduces pseudo-rehearsal through generated features
and helps the network to better remember previous knowl-
edge. However, it does not adapt to a situation in which
exemplars are not available, as it still relies on them for clas-
sification through NME. It is intuitive at this point to pass
from nearest-mean of exemplars to nearest-mean of gener-
ated features, computing the mean of the representation of
a given class considering not only the features extracted by
the stored exemplars but also the features sampled by the
generator, or considering only the latter in the most extreme
cases. To guarantee consistent representations for the same
classes at different training stages, we add a similar loss to
the one of equation 8, to minimize the mean squared error
between the features extracted at subsequent training steps.

In our case, this did not provide good results, with a
heavy performance drop with respect to iCaRL. We can ex-
plain this behavior as we trained the WGAN for 200 epochs,
with Adam optimizer and learning rate 10−4 for both gen-
erator and discriminator, and that may not be enough to
correctly learn the class distribution and so provide good
classification when the number of real exemplars is small,
and it is not feasible to train for a much longer number of
epochs or to perfectly tune the parameters with our avail-
able resources. In addition, the ResNet32 we used for CI-
FAR100 has a feature space of 64, so the variability of the
possible representations is quite limited. The works that ob-
tained good results with similar methods trained the whole
network for a very long time having at their disposal a lot

9



Algorithm 4: WGAN-driven pseudo-rehearsal
Input: C: set of learned classes; G: generator; m:

features per class to generate
Output: Set of synthetic features F
foreach c in C do

Generate random features as:

Ri ← N (0, 1) i = 1, ...,m

Feed G with R in order to obtain synthetic
features:

Fi ← G(Ri) i = 1, ...,m

end
Input: P: exemplar set for C; Dt: set of new

training data; F : set of synthetic features
foreach x in P do

Pass through the old network and store output
qx,t−1

end
foreach f in F do

Pass through last FC of old network and store
output qf,t−1

Pass through last FC of new network and store
output qf,t

end
q ← qx,t−1 + qf,t−1
Train network with distillation loss

more resources and computational power and used a bigger
network that can provide more accurate features.

5.3. Issues

Generate reliable information is not an easy task: a nec-
essary condition for this to be feasible is to have stored rep-
resentative knowledge to solve properly the problem. In this
section, we explain which kind of problems have occurred
during exploiting the generative approach.

One of the main iCaRL limitations is certainly the in-
evitable bias that arises between the knowledge held up to
a certain moment and the information related to the new in-
coming classes, the latter characterized by a much higher
magnitude than the former. This issue affects the herding
system as much as the generation of synthetic features since
both try to feed the network with data based on previous
representation carried out by ResNet feature extractor. Al-
though this effect is mitigated by the use of special losses
such as distillation loss, it arises without any solution when
the representation of previous knowledge changes through
the time when the system is trained on incoming new data.
Consequently, it is not possible to generate features consis-
tent with those extracted from the system during training

10 20 30 40 50 60 70 80 90 100
Number of learned classes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 o
n 

te
st

 se
t

iCaRL
Affinity propagation
Random pseudo-rehearsal
GAN-driven pseudo-rehearsal

Figure 3: Incremental learning results (accuracy) per batch
with settings of Table 2.

since our WGAN can be trained only after each batch of
new classes.

Another issue that we had to face during GAN training
is the so-called mode collapse: a sort of overfitting phe-
nomenon for which the generator, stuck in a local minimum,
collapses and produces limited varieties of samples since it
found a way to fool the associated discriminator and is not
able to learn anything during the training phase. Some tricks
have been proposed to overcome the problem [17], as fea-
ture matching and minibatch discrimination, but they lead
to longer training time and do not guarantee optimal per-
formances. To face this issue we tried to exploit different
WGAN settings:

• Changing discriminator and generator learning rates
in order to preserve the auxiliary network from un-
wanted behavior and unbalancing between two antag-
onist agents.

• Implementing a loss to force the auxiliary network to
produce synthetic features that are comparable with the
real ones.

Other solutions that were not exploited in this work to
improve in a more formal way the system are discussed in
Section 6.

5.4. Ablation study

Table 2 shows the results that we obtained with our vari-
ations compared to iCaRL.

The random pseudo-rehearsal approach gave us compa-
rable results to iCaRL in the first batches, but lower in final
ones. The reason could be that having a small subset of
exemplars, especially in the last batch, the random features

10



Table 2: Incremental learning results (accuracy, µ ± σ, nsamples = 3) of our variations compared to iCaRL on CIFAR100
dataset with an increment of 10 classes.

Model Mean accuracy 1st batch accuracy 10th batch accuracy Gap 1st to 10th batch

iCaRL 0.6076± 0.1210 0.8540± 0.0422 0.4681± 0.0004 45%
Affinity Propagation 0.6032± 0.1197 0.8493± 0.0452 0.4712± 0.0087 45%
Random pseudo-rehearsal 0.5653± 0.1426 0.8543± 0.0378 0.3897± 0.0062 54%
GAN-driven pseudo-rehearsal 0.6110± 0.1184 0.8540± 0.0375 0.4703± 0.0155 45%

vectors are less similar to the real ones. A possible improve-
ment is discussed in Section 6.

6. Future work

The experiments we have presented are only the start-
ing point for implementing iCaRL and improving its ability
to perform incremental learning. Below we present some
research ideas encountered during the development of this
project that inspired us or that we would have liked to im-
plement in case we had more resources or time available.

Improve SVM as classifier In Section 3.1 we proposed
come variations of iCaRL that used different classifiers,
eventually with different losses like the SNN loss in Sec-
tion 3.2.3. Besides tuning, one of the problems of low val-
ues of accuracy using the SNN loss and SVM could be the
training phase. We used the standard network in the train-
ing phase (with the SNN loss) and we changed the last fully
connected layer with the SVM only when testing. A prob-
lem of this approach is that despite the SNN loss is trying
to separate classes, we are training the network knowing
that we will have a fully connected layer at the end. In the
end, we use an SVM on a network that is not optimized for
SVMs. A solution could be to use the SVM when training
the network as done by Tang [19].

Improve the SNN loss The SNN loss could be improved
too. Since it is sensible to the batch size (the higher the
better) we may have better performances increasing it more
than what we tried given our computational resources. We
may also try to increase the number of epochs since the loss
did not converge with 150 epochs, which is the maximum
number of epochs that we tried.

Improve features generation In Section 5.3 we dis-
cussed the problems we faced with the random generation
of the images (random pseudo-rehearsal). We improved the
method by generating features instead of images. The main
problem of this approach is that, unlike images, features
must be computed at each epoch, since the feature repre-
sentation changes. For this reason, while with images we

could store the mean and standard deviation of all the im-
ages the first time, with features we need to compute them
with the exemplars. Better results may be obtained keep-
ing more exemplars for the generation process. In this case,
generating better features having more exemplars, the per-
formances may be higher than the iCaRL version with the
same number of exemplars.

Face the so-called semantic drift Class-incremental
learning of deep networks sequentially increases the num-
ber of classes to be classified. During training, the network
has only access to data of one task at a time, where each
task contains several classes. During this process, the net-
work is subject to a sort of ”drift” effect that leads previous
knowledge to be represented biased in favor of the informa-
tion associated with the new classes. In particular, it would
have been interesting to carry out a study on the variation of
the ”semantic” representation of classes involved in incre-
mental learning, drawing inspiration by Yu et al. [22].

Improve generative models Our experiments prove the
need to make the generative model able to learn incremen-
tally as much as the main system. The necessary condition
to refresh the representation of previous knowledge over
time is to be able to generate synthetic information with-
out being affected by the learning process. To this end, it
would be possible to:

• Exploit new losses to distill and preserve knowledge
from the precursor models to the current ones.

• Use more complex architectures and more suited for
this purpose.

7. Conclusion
In this work, we implemented a working iCaRL in-

stance and exploited personal methods to improve its weak-
nesses. We acquired an in-depth knowledge of the incre-
mental learning problem, exploring different methods and
techniques to address it from different scenarios and pro-
pose our personal solutions to improve the exemplars selec-
tion and to deal with the case of unavailable exemplars. We
understood the problem’s importance in the modern world

11



and had the opportunity to work on the state of the art solu-
tions in a widely researched topic.

References
[1] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan,

2017.
[2] L. Breiman. Random forests. Machine learning, 45(1):5–32,

2001.
[3] D. Fontanel, F. Cermelli, M. Mancini, S. R. Bulò, E. Ricci,

and B. Caputo. Boosting deep open world recognition by
clustering. arXiv preprint arXiv:2004.13849, 2020.

[4] N. Frosst, N. Papernot, and G. Hinton. Analyzing and im-
proving representations with the soft nearest neighbor loss.
arXiv preprint arXiv:1902.01889, 2019.

[5] C. He, R. Wang, S. Shan, and X. Chen. Exemplar-supported
generative reproduction for class incremental learning. In
British Machine Vision Conference (BMVC), 2018.

[6] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge
in a neural network. arXiv preprint arXiv:1503.02531, 2015.

[7] S. Hou, X. Pan, C. C. Loy, Z. Wang, and D. Lin. Learning a
unified classifier incrementally via rebalancing. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 831–839, 2019.

[8] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of
features from tiny images. 2009.

[9] Z. Li and D. Hoiem. Learning without forgetting. IEEE
transactions on pattern analysis and machine intelligence,
40(12):2935–2947, 2017.

[10] X. Liu, C. Wu, M. Menta, L. Herranz, B. Raducanu, A. D.
Bagdanov, S. Jui, and J. van de Weijer. Generative fea-
ture replay for class-incremental learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 226–227, 2020.

[11] M. McCloskey and N. J. Cohen. Catastrophic interference
in connectionist networks: The sequential learning problem.
In Psychology of learning and motivation, volume 24, pages
109–165. Elsevier, 1989.

[12] T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka.
Distance-based image classification: Generalizing to new
classes at near-zero cost. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 35(11):2624–2637,
2013.

[13] K. P. Murphy. Machine learning: a probabilistic perspective.
MIT press, 2012.

[14] L. E. Peterson. K-nearest neighbor. Scholarpedia, 4(2):1883,
2009.

[15] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert.
icarl: Incremental classifier and representation learning. In
Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pages 2001–2010, 2017.

[16] A. Robins. Catastrophic forgetting, rehearsal and pseudore-
hearsal. Connection Science, 7(2):123–146, 1995.

[17] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-
ford, and X. Chen. Improved techniques for training gans,
2016.

[18] H. Shin, J. K. Lee, J. Kim, and J. Kim. Continual learning
with deep generative replay, 2017.

[19] Y. Tang. Deep learning using linear support vector machines.
arXiv preprint arXiv:1306.0239, 2013.

[20] C. Wu, L. Herranz, X. Liu, Y. Wang, J. v. d. Weijer, and
B. Raducanu. Memory replay gans: Learning to generate im-
ages from new categories without forgetting. In Proceedings
of the 32nd International Conference on Neural Information
Processing Systems, NIPS’18, page 5966–5976, Red Hook,
NY, USA, 2018. Curran Associates Inc.

[21] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, and Y. Fu.
Large scale incremental learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 374–382, 2019.

[22] L. Yu, B. Twardowski, X. Liu, L. Herranz, K. Wang,
Y. Cheng, S. Jui, and J. v. d. Weijer. Semantic drift com-
pensation for class-incremental learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6982–6991, 2020.

12


