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1 Introduction

Our application is a web application that processes text reviews and displays the results on a web
interface. In particular, our application performs:

• word count of reviews, counting the total number of occurrences for each word across all
reviews;

• sentiment analysis, with prediction of the review’s nature, either “positive” or “negative”.

Our objective is to build a distributed system, which is able to manage and analyse a huge amount
of data. To achieve that, we worked on Amazon Web Services with our student accounts deploying
the components of our system on a Kubernetes cluster.

The complete project, together with instructions on how to deploy it, is available at https:

//github.com/gabridego/book-reviews-processing.

2 Software stack

2.1 Overview

• Data processing: Spark (Scala)

• Database: MongoDB with replication

• Messaging: Kafka

• Web server: NGINX (+ React)

• API Server: NodeJS (+ Express)

• API Gateway: NGINX

• Monitoring: Prometheus

• Visualization: Grafana

Figure 1: Architecture of the application, with user access
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2.2 Details

2.2.1 Spark

For our application, we used Spark version 3.0.1, because it is a well known data processing frame-
work that is widely used in the industry. Although it supports several programming languages,
we chose to use Scala (version 2.12) to write our Spark code to be sure there would be the right
connectors available. To build the application, we used sbt with the sbt-assembly [1] plugin when fat
JARs are needed.

As we need to analyse streaming data, we exploited Spark Structured Streaming, a stream
processing engine built on the Spark SQL engine with exactly-once guarantees. Structured Streaming
queries are processed in almost-real-time using a micro-batch processing engine, which processes data
streams as a series of small batch jobs. Different queries can be triggered on the same micro-batch,
which have different duration depending on the incoming data[2].

To process data, our Spark job subscribes to a Kafka topic, through the official Spark interface,
to get a data input on which to performs its’ tasks. The data is received in JSON format and
contains two fields, the text of the review and a numerical value representing the overall score. The
results are stored in a MongoDB database, to which Spark connects through the MongoDB Spark
Connector[3] and writes data via a Foreach sink.

As said before, the two tasks performed are word count and a sentiment analysis, computed by
means of three separate queries.

Word count To compute the number of occurrences of each word, the reviews’ text is split, punc-
tuation characters are removed, every character is converted to lower case and the words contained
in a list of common stop words are removed, as they don’t bring useful information. Finally, the
number of occurrences is counted for each remaining word. An entry is then added to the database,
possibly replacing the previous existing one for that word.

Sentiment analysis To perform a sentiment analysis task, we locally trained a random forest
model on an Amazon book reviews dataset[4], using Spark MLlib, and applied it online to streaming
data.

In order to train the model, 10000 reviews are randomly extracted from the original dataset
(which contains almost nine million documents) and the overall numeric score is mapped to a string,
considering each review as positive if the score is above 3, negative otherwise. The review text is then
tokenized, stop words are removed and weights are assigned to each word according to a TF-IDF
schema[5]. These operations are performed using MLlib functions. The extracted features are then
used to train a random forest with cross validation on five folds, in order to select the most suitable
value for the number of trees (between 10 and 50) and for the maximum tree depth (between 1, 5
and 10). Finally, the resulting model is exported and stored in memory.

When the streaming application is executed, the model is loaded from memory, streaming re-
views are processed accordingly and a label is predicted, either positive or negative. Two different
queries are then executed. The first simply stores an entry for each review, containing the text,
the ground truth and the predicted label, in a MongoDB collection. The second writes an entry
at each micro-batch in a different collection, containing the total number of predictions and the
model classification accuracy on the corresponding reviews since the beginning of the execution
(number of correct predictions

total number of predictions ).

Note that the wordcount and accuracy queries are possible thanks to the Structured Streaming
model, which allows for simple stateful streaming processing.
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Figure 2: An example of stateful Structured Streaming processing[2]

2.2.2 MongoDB

MongoDB is a well established database based on documents. It is meant to be scalable which is
a very important property of our application. Moreover, our team had some previous experience
with it, and it is also a part of the Databases systems course. As said, the Spark connector for
MongoDB is well supported, although it is not so straightforward with Structured Streaming. Given
our application purpose to process reviews, a document based database is a great fit.

2.2.3 Kafka

Kafka is a distributed event streaming platform. It works with a producer-consumer scheme, with
topics to write the events on. A producer writes on a topic and a consumer subscribes to that topic
to receive the events from the producer. We chose to use Kafka for three main reasons:

• it is widely used in big data system, scalable, fault-tolerant, etc.;

• Structured Streaming connectors with Spark, which eases the integration;

• a bit of prior experience.

2.2.4 NodeJS

NodeJS is an environment capable of running JS code in form of an HTTP server. Thanks to the
express framework, we have been able to build an application designed for scalable solutions. In
fact, in this way we have all features of nodeJS combined with the features available over express
layer. Our goal has been to build an extremely fast API server. In order to do that, we needed to:

• set the NODE ENV environment variable in production in order to enable caches and reduce
verbose messages;

• use mainly asynchronous instructions by exploiting JS promises;

• ensure automatically restart in case of errors.
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2.2.5 NGINX

NGINX allows us to build an api-gateway which is perfect for load balancing. Therefore, we are
able to redirect requests to the correct services based on the URL while keeping a high response
time. Moreover, the web application, based on REACT framework, has been moved from nodeJS
to NGINX for production.

2.2.6 Prometheus

Prometheus is a time series database that stores the metrics of a deployed system. Our choice
of Prometheus is a direct consequence of having our application deployed to a Kubernetes cluster.
Indeed, Prometheus is very popular choice for monitoring Kubernetes clusters, as it stores the metrics
exposed by the Kubernetes API. Moreover, it integrates well with the visualization tool Grafana,
and can be extended with an AlertManager that can be used to send notifications to the system
administrators (emails, slack etc.) if certain conditions are met, like a pod failure or high CPU
usage.

2.2.7 Grafana

Grafana is a visualization dashboard, it displays Prometheus’ metrics using charts and graphics. It
allows to check the Kubernetes cluster’s status efficiently.

2.3 Web Interface

As said before, the user interface runs over NGINX and is built with the REACT framework. It is
structured in order to allow a page to visualize data and another one to post reviews. Therefore,
the dashboard in figure 3 shows data computed by Spark in different ways:

• a word count table, to show the 100 most frequent words and their count;

• a word cloud, which represents the same information as the table but with a more user friendly
and nice representation;

• an accuracy chart, which shows how the test accuracy of the model varies increasing the
number of streaming reviews;

• a “sentiment” table, containing the predicted labels and the ground truth of the last 100
reviews.

This page performs a pool of data every two seconds and updates the page in case new data is
got. Improvements are possible, such as using a web socket to update data and reduce bandwidth
required, but that was not our goal.

In the management page, as shown in figure 4, we are able to post a custom review which is
composed by a text and a score from 1 to 5. Then it is sent as JSON to Spark, which processes it
and stores results on MongoDB.
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Figure 3: Dashboard UI

Figure 4: Management UI
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3 Architecture

The user, whether it is an actual user or a system admin, has to use the application’s features
through our cluster exposed endpoints: API gateway, Prometheus, and Grafana. The rest of our
resources are not accessible from outside the cluster by anyone but the administrators. As shown in
figure 1, the user interface is accessible through a load balancer, on port 80. To reach Prometheus
the port is 9090 and for Grafana the port is 3000.

One can observe the data processing pipeline in the same figure. The user can get a web interface
or send text through the API gateway to the webserver or to the API server respectively. The latter
is a producer for Kafka, it streams the user’s text on a single topic. Our Spark cluster subscribes
to that topic and receives the streams of data, then computes the word count and the sentiment
analysis as explained in 2.2.1. It stores the results in our MongoDB database. API server queries
data from MongoDB and updates the user web page periodically to display a dashboard with the
processed data. Figure 1 does not represent the replications of our services, which will be discussed
later.

4 Development process

In order to get our final system running, we started to build our single services by using docker
images and running them as containers. We starting to build services as api-server, webserver and
MongoDB. Instead, Kafka and Spark has been installed and tested locally for simplicity. Both servers
were connected in proxy mode but we changed it later on. After that, we decided to move to AWS
and use directly Kubernetes keeping everything in development mode and checking that everything
works. Finally, when our application reached a good state of working, we moved webserver and
api-server in production mode, removing the proxy between them and introducing an api-gateway
load balancer based on NGINX.

Regarding Spark, our job can independently run locally or on Kubernetes, it just depends on the
spark-submit command and on the services deployed locally.

5 Application life-cycle management

5.1 Amazon Web Services

Our AWS students accounts have some restrictions, listed here. The application only uses EC2
instances and S3 buckets. The machines are of type t3.medium, and operate on Ubuntu. To operate
our code we need at least 9 EC2 instances.

5.2 Terraform

Terraform manages cloud services with infrastructure as code. One can describe a resource with
code, and terraform will provide it when applied. We use Terraform to provision a S3 bucket that
is necessary for kOps to create a Kubernetes cluster.

5.3 Kubernetes

Kubernetes, or K8s for short, is a container orchestrator. It manages our application life-cycle. To
create and delete our Kubernetes cluster, we use the CLI tool kOps. kOps reserves resources on
AWS cloud without needing to provision them beforehand.
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All the software we use is running on containers and is managed by Kubernetes. To deploy
our application, we use .yaml files to describe our pods, deployments, services and statefulsets.
For automatic deployment, we wrote a few shell scripts that call Terraform, initialize the cluster
and start the required services through kubectl. Kubernetes ensures high availability and easy
monitoring, as we will discuss in the following sections.

Let’s take a closer look at peculiar resources deployments.

5.3.1 MongoDB

The MongoDB Community Kubernetes Operator[6] deploys MongoDB into Kubernetes clusters. It
supports scaling replica sets up and down, and creating users in the database. We used it to create
a replica set with 3 replicas. We also created a regular user that has readWrite access to our sdtddb
database and an admin user that has clusterAdmin role, with basically all privileges.

5.3.2 Spark

To run Spark on Kubernetes we followed the official documentation[7] and used spark-submit to
submit the spark job to our Kubernetes cluster. In order to run on Kubernetes, Spark must be
anyway present on the administrator’s machine and the spark-submit command requires the user
to provide a custom Spark docker image, containing the application JAR file. To obtain it, we
built an image for the basic Spark installation, with Spark’s docker-image-tool and the provided
Dockerfile, and incrementally worked on it adding our application JAR and the machine learning
model. Indeed, Spark does not allow to retrieve local data when executing in cluster mode. Although
the official Spark documentation[8] suggests to list Spark’s dependencies as provided when building
“uber” JARs as they should be provided by the cluster manager at runtime, we had to include
them when building with sbt-assembly [1] in order to correctly execute our application and load all
dependencies, which results in a huge docker image (more than 500 MB) that has to be downloaded
each time we restart the cluster.

6 Continuous integration with GitLab

We used the Ensimag GitLab to version our code. Anyway, GitLab is not just a version control
platform. It offers other tools to help ease out application deployments.

6.1 Container registry

GitLab provides a container registry[9] which we used to store our private Docker images. As
Kubernetes works with Docker, pods can just pull images from the registry.

6.2 Continuous integration pipelines

GitLab CI/CD[10] is a tool built into GitLab that helps developers follow continuous methodologies:
continuous integration, continuous delivery, continuous deployment. We took advantage of that to
build a continuous integration chain.

It works by adding a file called .gitlab-ci.yaml at the root of the repository. This file creates
a pipeline, which are a list of steps to run, each step containing one or more jobs. Those pipelines
are run when some changes are pushed to the GitLab repository and certain precised conditions are
met.
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The jobs are executed on a GitLab Runner[11]. The Ensimag GitLab possesses such a runner[12]
that is shared between all users.

Our project only has one pipeline and one job. It builds the Docker images of API server and
web server on the shared runner and pushes it to our GitLab’s Docker repository. Combined with
an image pull policy set to “Always” and an image tag set to “latest” for the concerned pods, one
only need to push code and restart the pod to update the service on the cluster.

7 Non-functional properties

For what concerns the other aspects of our application, and more specifically non-functional prop-
erties, we performed different tests that are related to:

• fault-tolerance & availability;

• performances;

• costs.

7.1 Fault-Tolerance & availability

In this section, we analyze how strong our system is in case some pods or nodes fall down. Different
techniques are possible to simulate these effects.

7.1.1 Destroying pods

A first possible technique is to destroy a pod and check if it is redeployed again by Kubernetes.

Kubernetes restart policy Kubernetes management of containerized applications allows failed
pods to be restarted. Most pods of our applications are managed with “Deployments” object by
K8s, so they are restarted whenever they fall into a failed state. Upon restart, all pods are able
to reconnect to the others without any issue. The restart process takes a few seconds so it ensures
availability together with replication. The exception is for Spark, which is explained in the next
section.

It has to be noted that, for exposed pods, namely api-gateway, grafana, and prometheus, their
public url changes when they are restarted, which can cause a denial of service. In a true production
setting, we could buy a domain name and force the public urls to static values on the purchased
domain name. The change of url is a process that can take up to 10 minutes in the case of our load
balancer, api-gateway.

From our tests we also noticed that, if a MongoDB replica pod is deleted, we get errors when
retrieving data, but all store operations are in a sort of queue and computed when all replicas are
ready again. This means that we do not lose data in this interval of time, but we can’t retrieve
them.

Spark job The processing part of our application is a Spark job submitted using the spark-submit
which spawns a spark-driver pod. This pod in turn creates Spark executors pods that are restarted
if they are deleted. However, the spark-driver pod itself does not restart upon failure, as Spark
overrides the pod restart policy to “never”. Moreover, this pod is affected by the failure of other
pods, such as kafka. This part of our application is a single point of failure.
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Kafka Given our use of Kafka, with only one topic, here is our current configuration:

• Zookeeper: 1 replica

• Kafka broker: 1 replica

• Topics: 1 topic

• Topic partition: 1 partition

• Replication factor: 1

As advised by the official documentation[13], to really achieve fault-tolerance as well as high avail-
ability we should have at least 3 zookeepers, 3 brokers, a replication factor of 3 and 3 partitions.
Indeed with our current configuration there would be some data loss if a broker died. To fix that
issue we would simply need to change a few values in our Kafka yaml deployment file, but we wanted
to keep our application demo simple.

Kubernetes master Currently, we have only one Kubernetes master, so, if it dies, the whole
cluster dies too. This is identified as a single point of failure for our application. As advised by
kOps documentation[14], we could tell kOps that we want 3 masters to ensure fault-tolerance as well
as high availability, but we chose to keep only one master to keep our demonstration app simple.

MongoDB Our MongoDB cluster is a good example of a resource that takes advantage of both
Kubernetes restart policy and replication. Our 3 nodes cluster ensures high availability.

7.1.2 Nodes draining

Another fundamental test is node draining. It consists in choosing a node, evicting all pods living
there and powering down the node[15].

As we can see in figure 5, running a client brings to an high usage of CPU, especially from Spark
service.

Figure 5: Resource usage, with a client which sends reviews automatically

In order to perform this kind of operation we can show all nodes with the command kubectl

get nodes. After choosing a node, we can power it down and evict all its pods with the command
kubectl drain <node name>. See figure 6.

In this case, we are draining a node where few Kubernetes pods and a MongoDB replica live.
From what we can see in the figure 7, the MongoDB replica db-02 reaches a zero usage CPU during
the eviction process and stabilizes again after few seconds.

Then, we tried to drain a node where api-gateway, mongo operator and a Spark executor live,
as shown in figure 8.
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Figure 6: Draining a node

Figure 7: Metrics with one node less

Figure 8: Draining another node

In this case, everything is restored again after eviction, but Spark crashes as usual due to cache
and checkpointing problems (figure 9).

Figure 9: Metrics with 2 nodes less, after draining
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Thanks to this test, we can confirm that the main problem is Spark and its crashes.

7.2 Performances

Regarding the performances, we have collected different metrics. Some of those are:

• initialization cluster time: 400s ∼ 600s;

• destroy cluster time: 200s ∼ 300s.

They are quite useful, especially to know how long is a denial of service in case a cluster update
is needed.

Response time is computed taking into account the average number of requests and the average
response time for each request, distinguishing GET and POST. In case a user accesses the dashboard,
two GET requests per seconds are sent, so the average response time is about 0.0422s if the response
is empty, otherwise about 0.050s if the response has 100 elements. In case of POST requests, we
run 1, 2 and 3 clients. Some results are displayed in figure 10.

Figure 10: POST Response time

The POST response time remains almost equal to 0.134s which is 0.134
0.0422

∼= 3.17 times of a GET
response time. As POSTs are sent asynchronously from the api-server without waiting for Kafka, we
obtain a low response time and that confirms the reactivity of our application. The best approach
would be to increase the number of requests and check when these values change, but it is an
impossible operation considering the computation power of AWS. Therefore, it could be tested in a
real traffic scenario.

Another metric we got is the bandwidth required for the dashboard. In fact, in the worst case
the dashboard gets the following responses every 2 seconds:

• a vector of 100 elements for the accuracy (∼ 3.88KB);

• two vectors of 100 elements for word count and word cloud (∼ 2 ∗ 6.36KB);

• a vector of 100 elements for sentiment analysis (∼ 44.2KB).

In total, a page requests 60.8 KB every 2 seconds, so ∼ 30.4KB/s or 0.0002432 Gbit/s. Given
that we are using t3.medium machines, then we have available 0.25 Gbit/s as baseline[16]. Under
the hypothesis that all the bandwidth is available at download side, we can compute the maximum
number of active dashboards our system can support, which is 0.25

0.0002432
∼= 1028. If we overcome this

value, then we would not be able to update the page every two seconds, with a lower reactivity of
page.
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Spark Different tests has been performed in order to know how much resources Spark uses. In
particular, we run our Spark job varying the number of executors, from 1 to 4, which is the maximum
number of supported executors with 8 t3.medium nodes. Each Spark job is submitted when a client
is already running inside the cluster, after emptying the MongoDB collections and is run for five
minutes, in order to have a coherent testing environment. We report here the results collected from
Grafana and from the Spark UI.

From the Grafana dashboard, some interesting results are CPU and network usage. From fig-
ure 11, it can be noticed that, with one executor, the executor has a high CPU usage while the
driver’s consumption is much lower. Instead, with four executors it is the opposite, with a high
CPU usage for the driver and a lower consumption for the executors. With more than one executor,
one of them has a much higher CPU usage than the others.

(a) 1 executor

(b) 2 executors

(c) 3 executors

(d) 4 executors

Figure 11: CPU usage

13



Figure 12: Spark CPU usage varying the number of executors

This behavior is confirmed by the network usage in figure 13, with a high incoming network traffic
for a single executor. The curve with the most significant outgoing network traffic corresponds to
Spark driver. Its outgoing traffic increases with the number of executors, as it must forward data to
all of them.

(a) 1 executor

(b) 2 executors

(c) 3 executors

(d) 4 executors

Figure 13: Network usage
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From Spark 3.0, a Structured Streaming UI is available inside Spark Web UI, through which
streaming queries jobs can be monitored with information and statistics. For our three queries, we
can visualize input rate, process rate, input rows, batch duration and operation duration. At first
glance, a few interesting information emerges. Generally, varying the number of executors the input
rate is comparable, while the process rate has high peaks with one executor and tends to stabilize
with more executors (figure 14). The duration of the micro-batches also tends to decrease.

(a) 1 executor (b) 4 executors

Figure 14: Process rate

Finally, the operation duration chart is also interesting. It shows the amount of time taken to
perform various operations in milliseconds. As reported in figure 15, with one executor operations
take a long time and are mainly devoted to the addBatch operation (in light orange), the time taken
to read, process and write the output of the micro-batch. With four executors, the operation time is
much shorter and the addBatch time is comparable to the sum of walCommit and queryPlanning (in
green), in which metadata and execution plan are generated[17]. With many executors the driver’s
workload is higher, as it has to manage and distribute queries among them.

(a) 1 executor (b) 4 executors

Figure 15: Operation duration

7.3 Costs

Regarding the costs, we analysed the AWS Cost Explorer dashboard. It allows us to get an estimation
of the money spent per day and also forecasts for the end of the month (figure 16).

We would have liked to get these metrics per hours, but unfortunately we are not able to due
to the limitations of the educate accounts. For this reason, we opted to run the cluster for one
hour with three Spark executors in two different scenarios, running in idle or receiving reviews from
active automatic external clients. In this way, we could get an approximation of the cost per request.
However, this cost is affected by fixed costs to run a cluster and by other hidden costs.

The cost in idle is mainly due to creation and destruction of cluster, but also by a small CPU
usage of Spark which is about 0.1 core, as shown in figure 17.

Although we got some costs, they are not so reliable because of just one hour of test and few
requests. Therefore, we should for instance test for more hours with huge traffic in order to reduce
the estimation error.

15



Figure 16: AWS cost explorer example

Figure 17: Cluster usage in idle

8 Conclusion

In general, considering all statistics we collected during our tests, we can say that our system is able
to run quite well, although we had some problems with Spark. Even though some pods are running
in production mode, our cluster is not, we are still far from a production grade application, so there
are different improvements that we could apply, mainly:

• add replicas to Kafka in case of high load;

• use autoscaler for api-gateway, api-server and webserver;

• implement Spark checkpointing, in order to exploit at the maximum the Structured Streaming
system and be able to recover from failures;

• enable restart policy to “Always” for the Spark driver;

• use web sockets instead of pooling on dashboard to reduce bandwidth.

To all readers, we thank you for reading this report.
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